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Copyright

GESSA Copyright (C) 2010 Michael Ochs, Elana Fertig, Ludmila Danilova
This program is free software: you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; with-
out even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program ($GESSAPath/LICENSE).
If not, see http://www.gnu.org/licenses/.

1

http://www.gnu.org/licenses/


Contents

1 Introduction 6

2 Installation instructions 7

3 Running instructions 8
3.1 Driver script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Model configuration files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Simulation specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Organism geometry and cell lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 External signal propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.4 Cell signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.5 Transcription and translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.6 Updater interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.7 Encoding biological / experimental conditions . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Model output and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Example: C. elegans VPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Support functions in $GESSAPath/Celegans/Functions . . . . . . . . . . . . . . . . . 17
3.4.2 Support classes in $GESSAPath/Celegans/Classes . . . . . . . . . . . . . . . . . . . . 17

4 Software overview 18
4.1 Organism classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 Organism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.2 Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.3 CellProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.4 CellState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Simulation classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.1 SystemUpdater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.3 DiffusionUpdater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.4 PPIUpdater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.5 TTUpdater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.6 TransportProtein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Simulation result classes and support functions . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1 OrganismHistory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 getSpeciesNumber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.3 plotSpeciesHistory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.4 speciesPerOrg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Feedback 33

2



6 Acknowledgments 34

3



List of Figures

4.1 Diagram of key components and classes in GESSA. . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Flow chart demonstrating synchronization of timing for simulation modules. . . . . . . . . . . 32

4



List of Tables

3.1 List and brief description of configuration files required by GESSA. . . . . . . . . . . . . . . . 9
3.2 List of fields for the central configuration file. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Naming convention for species types in the cell signaling configuration file . . . . . . . . . . . 13
3.4 Naming convention for reactions in the cell signaling configuration file. . . . . . . . . . . . . . 13
3.5 Modifications to wild-type organism configuration files to standard biological / experimental

conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Modifications to wild type C. elegans configuration files to simulate standard experimental

mutations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5



Chapter 1

Introduction

In this document, we describe the Matlab code for a hybrid model of transcriptional reprograming due
to cell signaling called GESSA (Graphically Extended Stochastic Simulation Algorithm). Specifically, this
model combines (1) PPBN (Pooled Probabilistic Boolean Network) graphical models of cell signaling; (2)
Stochastic Simulation Algorithm (SSA) models for transcription and translation processes; (3) diffusion of
external signals (ligands); and (4) active transport of specified molecular species. Simulations of organisms
defined a user-defined central driver script (Section 3.1) which evolves organisms defined through classes
described in Section 4.1 with a central simulator class (Section 4.2). An example simulation for vulval
development in C. elegans is released with this model as an example of its utility (Section 3.4).

The Matlab code for the GESSA model for cell signaling and transcriptional responses is freely available
at http://www.cancerbiostats.onc.jhmi.edu/GESSA.cfm. The sofware is distributed under the GPL
Version 3, as described in the Copyright section above. Installation instructions are provided in Chapter 2,
running instructions in Chapter 3, and software overview for developers in Chapter 4.

We note that the functions simulate.m and stoch.m in
$GESSAPath/HybridModel/Classes/@TTUpdater/private are adapted from the SSA code of Ullah M,
Schmidt H, Cho KH, Wolkenhauer O: Deterministic modelling and stochastic simulation of biochemical
pathways using MATLAB. Syst Biol (Stevenage) 2006, 153(2):53-60.

Please contact Ludmila V. Danilova ludmila.danilova@gmail.com or Elana J. Fertig ejfertig@jhmi.edu
for GESSA citation information.
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Chapter 2

Installation instructions

The archive GESSA-1.0.0.zip containing the GESSA code can be downloaded from http://www.cancerbiostats.
onc.jhmi.edu/GESSA.cfm. This code requires at least Matlab Release 2008b. To install GESSA, this archive
should be unzipped into a path (referred to as the system variable $GESSAPath throughout this User’s Man-
ual). The unzipped folder will contain the following folders:

Celegans Sample code, data files, and output from a simulation of wild type C. elegans vulval development.

HybridModel Classes and functions needed to run GESSA.

UsersManual This GESSA.pdf file and other supporting documents.
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Chapter 3

Running instructions

In order to run GESSA to simulate cell signaling and transcription/translation events in an organism, we
recommend that the user create a central driver script as specified in Section 3.1. This script will run GESSA
in three major steps: (1) reading in organism and simulation specifications from configuration files (Section
3.2), (2) running the simulation, (3) and creating diagnostics to assess phenotypes from this simulation
(Section 3.3). The first two steps are controlled through a central function
$GESSAPath/HybridModel/Functions/driveHybridModel which inputs a central simulation file (Section
3.2.1) and outputs the results of the simulation. Although the user must define the appropriate diagnostics
for the simulated organism, we have provided numerous tools for these diagnostics described in Section
3.3. An example of such a run used to model wild type vulval development in C. elegans, released in
$GESSAPath/Celegans is provided in Section 3.4.

3.1 Driver script

In order to simulate an organism with GESSA, a user must create a driver script to implement this organism
simulation. An example of such a script is provided for C. elegans in
$GESSAPath/Celegans/CElegansDriver.m and will serve as a model for this description of construction of
a driver script.

Any driver script should begin with the following commands

addpath(‘$GESSAPath/HybridModel/Classes’)
addpath(‘$GESSAPath/HybridModel/Functions’)

to make the GESSA classes and functions available to the simulation. In particular, the driver script will have
access to the central GESSA simulation function driveHybridModel. This function accepts the following
input arguments:

• Central simulation file that specifies the organism and simulation parameters. The format of this file
is described in Section 3.2.1.

• (OPTIONAL) An output file name for the simulation results. If not specified, called “false” or by an
empty string, results will not be saved.

This function will then read in the configuration files, initialize the organism and simulation, run the sim-
ulation for the specified time parameters and specified number of organism copies, and save the results
and configuration files in the specified archive. After running, driveHybridModel will return the following
variables:

1. OrganismHistory object (see Chapter 4) containing simulation results averaged across all organism
copies.
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2. Array of OrganismHistory objects containing simulation results for each organism copy.

3. Name of archive to which configuration files and simulation results were saved.

4. Start time of the simulation.

5. End time of the simulation.

We have developed several diagnostic tools (Section 3.3) which will input the OrganismHistory objects
output by this simulation to create plots and assess phenotypes from specified species states within the
organism. For example, $GESSAPath/Celegans/CElegansDriver.m uses the plotSpeciesHistory function
to plot the protein history for the RAS pathway in p6.p cell and uses a user defined function TF snapshots
to infer transcription factor activity every half hour of simulation time (see Section 3.4). The C. elegans
driver script adds these results to the archive created by the driveHybridModel function.

3.2 Model configuration files

The GESSA simulation requires several configuration files to specify simulation parameters, organism com-
ponents, evolution processes, and process interactions. Wherever possible, these configuration files conform
to SBML standards. However, for aspects including timing and geometry, which are not described by SBML,
we developed appropriate formats described below.

Table 3.1 provides an overview of the GESSA configuration files, include references to each of the cor-
responding files in $GESSAPath/Celegans/Data/WT 3cells used for the C. elegans example described in
(Section 3.4). The content and format of each of these files is described in further detail in the following
subsections, included in the table for each file type. This section of the manual also describes modifications
that should be made to these files to represent standard experimental conditions in the GESSA simulations.

Table 3.1: List and brief description of configuration files required by GESSA.

File Format Section Example
Central configuration txt 3.2.1 simulationParameters.txt
Organism geometry and lifecycle xml 3.2.2 3 cells info.xml
External signal propagation xml 3.2.3 diffusion.xml
Cell signaling SBML 3.2.4 network 3cells.xml
Transcription/translation SBML 3.2.5 celegans TT LAG2 EGL17.xml;

celegans TT LIN39 UP1 LIN1a.xml;
celegans TT LIP1.xml

Process mapping txt 3.2.6 updaterMaping.txt

3.2.1 Simulation specification

Central configuration file with simulation specification is a tab-delimited file with fields described in Table 3.2.
Each line of the file represents a field and value. Fields in the file can be in arbitrary order. This file contains
paths to all necessary configuration files, name of output archive, start and end time of simulation, the
number of simulated organisms, and time steps for all updaters and averaging organism history. An example
of the file is provided in the $GESSAPath/Celegans/Data/WT 3cells/simulationParameters.txt.
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Table 3.2: List of fields for the central configuration file.

Field Required/
Optional

Value Comments

modelFile Required Path to file Path to file(s) with organism geome-
try and lifecycle (Section 3.2.2), pa-
rameters for cell signaling (Section
3.2.4) and transcription/translation
processes (Section 3.2.5). The val-
ues of properties for the object of the
Organism class (Section 4.1) is read
from the file(s).

PPIinitFile Optional Path to file The file contains initiation val-
ues for cell signaling. The
PPIUpdater.initializer method
reads the file.

TTinitFile Optional Path to file The file contains initiation values
for transcription/translation pro-
cess. The TTUpdater.initializer
method reads the file.

DiffusionInitFile Optional Path to file The file contains initiation values
for external signal propagation. The
DiffusionUpdater.initializer
method reads the file.

outputArchive Required String Specifies a name of archive to which
configuration files and simulation re-
sults is saved.

simulationStartTime Required Time in seconds The start time of simulation.
simulationEndTime Required Time in seconds The end time of simulation.
numberOfOrganisms Optional Integer number Number of organisms. Default value

is 1.
timeStepPPI Required Time step in seconds A time step for cell signaling

(PPIUpdater).
timeStepTT Required Time step in seconds A time step for transcrip-

tion/translation process (TTUpdater).
timeStepDiffusion Required Time step in seconds A time step for external signal propa-

gation (DiffusionUpdater).
timeStepAverage Required Time step in seconds A time step for averaging organism

history.

3.2.2 Organism geometry and cell lifecycle

Organism geometry and cell lifecycle are specified in xml file. This file should be referenced in the central
configuration file in the modelFile field. An example of the file is provided in
$GESSAPath/Celegans/Data/WT 3cells/3 cells info.xml. This file contains the following tags and their
attributes:

Organism The main tag of the xml document, containing the name of the organism being simulated. For
example, it is set to CElegans in the sample file provided in the Celegans folder

notes String for identification of the file. The value must be “cells info” to ensure that the program will
read the information from the file.
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listOfCells Container for cells of the organism that are represented by cell tags. One or more instances
of the cell tag can be located in an instance of listOfCells tag.

cell Describes cell geometry, lifecycle and external signals received by a cell inside the listOfCells tag.
The cell tag has the following attributes:

name Name of the cell matching a name of cell in the listOfCompartments tag of the cell signaling
file (Section 3.2.4).

alive Boolean value that specifies whether this cell is alive at start time specified in the startTime
attribute.

leftNeighbor Name of a cell to the left.

rightNeighbor Name of a cell to the right.

startTime Time in seconds when this cell becomes alive.

divisionTime Time in seconds when this cell divides.

growthRate Rate of cell growth.

signal Describes a signal that the cell receives inside the cell tag. One or more instances of the signal
tag can be located in an instance of cell tag. This tag has the following attributes:

id String for identification of the signal. This attribute should correspond to the id attribute of the
signal tag in the external signal propagation xml (Section 3.2.3).

distanceToSource A distance to a source of the signal. This value is used for the external signal
propagation modeling in a DiffusionUpdater object (Section 4.2.5).

Note, the simulation will start at the minimum of all cell startTime if it is greater than the simulationStartTime
parameter of the central configuration file (Section 3.2.1) and end at the maximum of all cell endTime if it
is less than the simulationEndTime. Also, in this version, the cell attribute is limited to a linear geometry
with left and right neighbors. We will relax this geometric requirement in future versions. Finally, although
specified, the growthRate attribute of cell is currently unused in this version, but is provided for future
versions. This growth rate is also currently confined to a universal parameter for each cell in the current
version. We will relax this constraint to allow for changing distances between each signal and source in
future versions of the model.

3.2.3 External signal propagation

This configuration file that describes parameters for external signal propagation is in xml format. This file
should be referenced in the central configuration file in the DiffusionInitFile field. A DiffusionUpdater
object (Section 4.2.5) uses the parameters specified in this file to model signal propagation. An example
of the file is provided in $GESSAPath/Celegans/Data/WT 3cells/diffusion.xml. This file contains the
following tags and their attributes:

Organism The main tag of the xml document, containing the name of the organism being simulated. For
example, it is set to CElegans in the sample file provided in the Celegans folder.

annotation Any user-defined string for description of the file.

signalList Container for signals that are represented by signal tags. One or more instances of the signal
tag can be located in an instance of signalList tag.

signal Describes a signal in the signalList tag. This tag has the following attributes:

id Character for identification of the signal. This attribute should correspond to the id attribute of
the signal tag in the organism geometry and cell lifecycle xml (Section 3.2.2).
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ligand Name of diffused species. It should correspond to the species name in cell signaling file
(Section 3.2.4).

type Type of diffusion.

speed Speed of signal propagation. For diffusion, represents the diffusion coefficient.

sourceGrowthRate Rate at which source signal changes in time (positive for growth, negative for
decay).

sourceMagnitude Initial magnitude of the signal at the source. If a point source, magnitude resulting
from integrating the delta function describing that source.

startTime Start time in seconds of signal propagation from source.

endTime End time in seconds of signal propagation from source.

Note. The current version of the program supports only a single diffusion source for each species. We
will modify this in future versions. Furthermore, the sourceGrowthRate is currently unused in our model,
but serves as a placeholder for future propagation models along with the evolving geometry specified in the
geometry and lifecycle xml (Section 3.2.2).

3.2.4 Cell signaling

The cell signaling configuration file is a file in SBML Level 2 Version 4 format (see http://sbml.org/Main_
Page). We adapted this format in this model to enable the SBML format to capture all the necessary at-
tributes to describe the state of signaling species and reactions. We describe our usage of the SBML tags and
attributes in this model below. This file should be referenced in the central configuration file in the modelFile
field. An example of the file is provided in $GESSAPath/Celegans/Data/WT 3cells/network 3cells.xml.

File Identifier

The notes tag of the file must be set to “network” to indicate that the file contains information about cell
signaling to ensure proper file processing.

List of Compartments

In the listOfCompartments tag of the file, all cells of organism must be specified. Each cell must be
describe in compartment tag inside the listOfCompartments tag. Cell names must correspond to the names
in organism geometry and cell lifecycle file (Section 3.2.2).

List of Species

The list of species involved in signaling reactions are specified in the listOfSpecies tag. Each species is
specified in species tag inside listOfSpecies. One or more instances of the species tag can be located in
an instance of listOfSpecies tag. SBML format does not have attribute to refer to a species state (active,
inactive, bound and unbound to scaffold), so we use the id attribute to specify the name and the state of the
species. Each species has several species tags corresponding to active or inactive and bound or unbound
to scaffold states. To specify species state, add the following letters to the species name:

a for active

i for inactive

b for bound to scaffold

u for unbound to scaffold
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For example, setting the id attribute to LIN45i u means that LIN45 species is inactive and unbound.
These additional letters are necessary to initialize correctly the properties of the CellProperties object
(Section 4.1.3) and they are removed from the species name after reading. The program uses the species
names without the additional letters.

We use the name attribute of the species tag to specify the type of the species in the different properties
of the CellProperties object (Section 4.1.3). See Table 3.3 for details.

Table 3.3: Naming convention for species types in the cell signaling configuration file
Value of the name attribute Property of the CellProperties object
activator ProteinTypes
repressor ProteinTypes; RepressorTypes
TF ProteinTypes; canTransport
receptor ReceptorTypes
external signal ExternalSignals
neighbor signal ExternalSignals
scaffold ScaffoldTypes

List of Reactions

The listOfReactions tag specifies the interactions between species in the signaling module. A reaction is
described in the reaction tag inside the listOfReactions tag. We use the name attribute of the reaction
tag to enable the SBML format to refer to the type of signaling reaction, as is required in our model. A list
of the reaction types recognized by the cell signaling process is provided in Table 3.4.

Table 3.4: Naming convention for reactions in the cell signaling configuration file.
Value of the name
attribute

Description Property of the
CellProperties object

scaffold Binding and unbinding proteins
to scaffold

Scaffolds

ES activation Activation of receptor by exter-
nal signal

ExternalSignals

activation receptor Protein activation by receptor Receptor2Target
spontaneous receptor Spontaneous activation and in-

activation of receptor
SpontaneousActivationReceptors;
SpontaneousInactivationReceptors

activation Activation of signaling protein
by signaling protein

PPI

activation bound Activation of bound protein by
signaling or bound protein

PPI

repression Repression of signaling protein
by signaling protein

PPI; Repressors

repression bound Repression of bound protein by
signaling protein

PPI

spontaneous unbound Spontaneous activation and in-
activation of signaling and un-
bound proteins

SpontaneousActivationUnboundProteins;
SpontaneousInactivationUnboundProteins

spontaneous bound Spontaneous activation and in-
activation of bound protein

SpontaneousActivationBoundProteins;
SpontaneousInactivationBoundProteins

transport Transport to nucleus transportTime

13



3.2.5 Transcription and translation

Configuration file for transcription and translation is a file in SBML Level 2 Version 4 format (see http:
//sbml.org/Main_Page). This file should be referenced in the central configuration file in the modelFile
field. An example of the file is provided in $GESSAPath/Celegans/Data/WT 3cells/celegans TT LIP1.xml.

File Identifier

The notes tag of the file must be set to “TT” value as it is specified in the celegans TT LIP1.xml file, for
example. This value means that the file contains information about transcription and translation process,
and the program calls corresponding function to read it and create a SSA Properties object (Section 4.1.3).
This object is added to the TT Species property of the CellProperties object (see Section 4.1.3).

Species Name Agreement

The list of species involved in transcription and translation reactions are specified in the listOfSpecies
tag. Each species is specified in species tag inside listOfSpecies. One or more instances of the species
tag can be located in an instance of listOfSpecies tag. We append either “nucleus ” or “cytoplasm ”
to the species name referring to compartment where the species is located. If a species can be located in
both compartments, it has two different names; and the program treats these names as different species.
For example, if LIN39 species can be in both cytoplasm and nucleus, it has two species in the file with
“cytoplasm LIN39” and “nucleus LIN39” names.

If several files for transcription and translation processes are loaded in the program, the species with
the same names in different files are treated as the same species and the populations of these species are
synchronized across objects in the TT Species property of the CellProperties object.

3.2.6 Updater interactions

SBML files for cell signaling and transcription/translation may use different naming conventions to refer to
the same species. For proper updating of population for species that has different names in the PPIUpdater
and TTUpdater objects, we need a mapping between the species in these objects. The process mapping
file contains list of species names that should be updated. This is a tab-delimited text file with the two
fields: [networkToTT] for updating the number of species from cell signaling to transcription/translation
and [TTtoNetwork] for reversed updating. All species names should correspond to the id attribute of
the species tag in cell signaling and transcription/translation xml’s. For species defined in cell signaling
xml, their type (“protein” for signaling proteins, “externalsignal” for external signals, etc as specified in
Section 4.1.3) also should be specified in the format “name, type” (see the updaterMapping.txt file in the
$GESSAPath/Celegans/Data/WT 3cells folder as an example). This file should be referenced in the central
configuration file in the TTinitFile field.

3.2.7 Encoding biological / experimental conditions

Users may wish to run several simulations for organisms under a range of biological or experimental condi-
tions to perform in silico experiments to predict the effect of these conditions on phenotypes. To explore
these variations, users must define configuration files that encode these conditions as described above. In
this case, users should first create a set of files for the standard wild-type organism and then create new
configuration files based on the original files that encode the desired conditions. Table 3.5 describes the
appropriate modifications that the user should make to the wild-type configuration files to encode some
standard experimental conditions.
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Table 3.5: Modifications to wild-type organism configuration files to standard biological / experimental
conditions. The “file” column lists the configuration file which should be modified with the modification in
the “modification” column.

Condition File Modification
Gain of function (GOF) Cell signaling Set inactive population of GOF

species to 0 and active population to
full species concentration in from the
wild type organism. Also must set
spontaneous activation rate for this
species to a small number to make
probability of activation one.

Loss of function (LOF) Cell signaling Set inactive and active populations of
LOF species to 0.

Partial GOF Cell signaling Increase initial active population,
decrease initial inactive population,
and increase spontaneous deactivation
rate by an amount based upon the de-
gree of partial GOF.

Partial LOF Cell signaling Reduce initial inactive and active pop-
ulations by an amount based upon the
degree of partial LOF.

Knock in Transcription / Translation Increase initial population of DNA for
knock in species.

Knock out Transcription / Translation Set population of DNA for knock out
species to 0.

3.3 Model output and diagnostics

By default, the driveHybridModel function will create a zip archive with the name specified in the central
configuration file (Section 3.2.1) containing the following:

• SimulationResults folder

– Matlab data file (.mat) titled by the name specified in call to driveHybridModel (Section 3.1)
containing OrganismHistory (Section 4.3) objects with average state and each state for simulated
organisms. Note that by default, driveHybridModel will not create this file leaving this folder
empty in the archive.

• ConfigurationFiles folder

– Model configuration files (Section 3.2).

After running the model, the user may wish to examine the state of specific cell species to assess the cellu-
lar state and organism phenotype over the simulation period. GESSA facilitates such simulation analysis fol-
lowing the support functions inside $GESSAPath/HybridModel/Functions that act on the OrganismHistory
(Section 4.3) objects returned by the driveHybridModel (Section 3.1):

getSpeciesNumber Returns population of specified species from specified cells at a given simulation time.

plotSpeciesHistory Plots population of specified species from specified cells throughout the simulation.
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speciesPerOrg Creates a table of the population of specified species from specified cells at given simulation
time(s) for multiple simulations stored in an array of OrganismHistory objects.

Unless otherwise specified, each of these support functions acts only on a single OrganismHistory object,
typically on the average simulated organism or on a single simulation copy stored in elements of the array
of OrganismHistory objects returned by driveHybridModel. We describe sample implementations of these
functions for C. elegans in Section 3.4 and provide further details on these functions in Section 4.3.

3.4 Example: C. elegans VPC

The $GESSAPath/Celegans folder contains a sample application of GESSA. This example simulates devel-
opment of the three central vulval precursor cells (VPCs; p5.p-p7.p) in a wild type C. elegans organism due
to the interaction of signaling in the RAS and Notch pathways. The CElegansDriver.m script contains a
central driver script, as described in Section 3.1. First, this script uses the driveHybridModel function to
run GESSA for parameters specified in files (listed here in Table 3.1) that are indicated the central configura-
tion file $GESSAPath/Celegans/Data/WT 3cells/simulationParameters.txt (format described in Section
3.2.1). As described in Section 3.1, calling driveHybridModel runs GESSA, places the simulation files in the
specified zip archive (here called output), and returns OrganismHistory objects with the average state (here
called avgHistory) and state from each simulation (here called allOrgHistory). As described in Section
3.2.7, this same driver script can be run with configuration files modified from the wild type as described in
Table 3.6 to simulate standard mutations in C. elegans VPC experiments.

Table 3.6: Modifications to wild type C. elegans configuration files to simulate standard experimental mu-
tations.

Condition File Modification
LIN-12 LOF network 3cells.xml Set initialAmount attribute of

the species tag with id attribute
“LIN12i” to “0”.

LET-60 GOF network 3cells.xml Set initialAmount attribute of
the species tag with id attribute
“LET60i” to “0” and with id at-
tribute “LET60a” to “100”. Set
the spontaneous activation rate
of the reaction tag with id
containing the phrase “sponta-
neous activation LET60” contained
in the listOfParameters tag to “1”.

AC Ablation diffusion.xml Set sourceMagnitude attribute of
signal tag with attribute id of
“AC LIN3” to “0”.

LIP-1 Knock out celegans TT LIP1.xml Set initialAmount attribute of
species tag with attribute id of
“nucleus DNAlip1” to “0”.

KSR LOF network 3cells.xml Set initialAmount attribute of
species tag with id attribute “KSR”
to “0”.

In this sample driver script, we perform additional C. elegans specific diagnostics from support functions
and classes provided with this example and demonstrate how to save the results with the specified archive.
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After running GESSA, the driver script first unzips the output archive into a specified folder using the unzip
command. The driver script then calls the speciesPerOrg support function (Section 4.3) to create a table
of the specified species in the specified output file place in the path of the unzipped archive. Similarly, the
driver script uses the plotSpeciesHistory function to plot the average state of proteins in the RAS pathway
during the simulation. This plot may also be saved into an eps file for output if the user uncomments the
saveas command. After creation of these additional diagnostic files, we recreate the output archive using the
zip command and remove the temporary folder to which these files were output using the rmdir command.

We have included additional C. elegans specific diagnostics for release with this example, some of which
are called in the driver script (e.g., plotmRNA). We describe these utilities in the following subsections.

3.4.1 Support functions in $GESSAPath/Celegans/Functions

plotmRNA

The plotmRNA function plots the total mRNA (top subplot) and protein (bottom subplot) population of
LIN39, LAG2, EGL17, and LIP1 for a specified C. elegans VPC cell over the simulation period in an
OrganismHistory object. The function is called as follows:

plotmRNA(orgHist, cellName)

Input arguments:

orgHist OrganismHistory object from which to plot the species states.

cellName Name of cell for which to plot the species states. Must be a single C. elegans VPC cell or function
call will throw an error.

TF snapshots

The TF snapshots function creates a table in the output file TF numbers.txt containing the total population
of LIN31, CEH20-LIN39 complex, and NICD-LAG1 complex bound and unbound to the DNA in the nucleus
for a specified cells in each input simulation. The function is called as follows:

fileName = TF_snapshots( orgHistory, cellName, startTime, endTime, timeStep)

Input arguments:

orgHistory Array of OrganismHistory objects containing results from GESSA simulations of C. elegans.

cellName Cell array containing names of C. elegans VPC cells from which to extract the species populations.

startTime First time at which to extract the species populations.

endTime Last time at which to extract the species populations.

timeStep Interval at which to extract the species populations. (Optional; default: every 1800 s)

Return variable:

fileName File name to which results were output (TF numbers.txt).

3.4.2 Support classes in $GESSAPath/Celegans/Classes

CelegansPlotter

The CelegansPlotter contains several static methods which call the plotSpeciesHistory support function
in order to plot the state of key species in all three VPC cells in the example C. elegans simulation.
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Chapter 4

Software overview

GESSA consists of classes and support functions designed to describe organism components and simulate the
multi-cellular model specified through the simulation configuration files described above (Section 3.2). In this
section, we describe several of the classes in GESSA. For clarity, we focus these descriptions largely on the
objects and methods within the classes that are most likely to be accessed by users for other organisms. We
also note some places in these classes where developers may wish to make modifications to explore hypothe-
ses about mechanisms underlying biological processes not modeled here. Any developers desiring further
information about GESSA’s structure should contact Ludmila V. Danilova ludmila.danilova@gmail.com
or Elana J. Fertig ejfertig@jhmi.edu.

GESSA classes are divided into three major categories: (1) classes used to describe the organism and its
components (Section 4.1), classes used to perform the simulation of modeled cellular processes (Section 4.2),
and classes used for simulation results and diagnostics (Section 4.3). Figure 4.1 diagrams the interaction
between these core classes. We describe this subset of classes in further detail in the following subsections.

4.1 Organism classes

4.1.1 Organism

An object of class Organism (source in $GESSAPath/HybridModel/Classes/@Organism) describing the prop-
erties and states of cells at a single timestep used for the simulation. Organism objects have the following
properties with public get access:

CellTypes Array of CellProperties objects defining the set of possible cell types in the Organism.

NCells Integer containing the number of cells in the Organism.

OrgCells Array of Cells objects defining the cell types and states of each of the NCells in the Organism.

CellNetwork NCells by NCells matrix defining the topology of the Cells in the Organism.

Progeny NCells by NCells matrix whose ij entry is 1 if cell i is a progeny of cell j and 0 otherwise.

CellStartTime Numeric array of starting active time for each of the NCells as defined in Section 3.2.2.

DivisionTime Numeric array containing division time for each of the NCells as defined in Section 3.2.2.

These properties are set by methods defined in the Organism class called when reading in the simulation
configuration specified in Section 3.2.
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Figure 4.1: Diagram of key components of and key classes in GESSA. A single arrow with a diamond at the
end denotes an object of specified class (diamond side) containing a set of object(s) with indicated number
and property name of the specified class (arrow side). A double arrow indicates that the specified method
(name in italics) acts on an object of the specified class (arrow side) internal to that object (if contained in
the object) or as a return argument. Highlighted classes are the organism classes described in Section 4.1.

4.1.2 Cells

An object of class Cells (source in $GESSAPath/HybridModel/Classes/@Cells) stores the properties and
state of a cell at a single timestep used for the simulation. Cells objects have the following properties with
public get access:

Name Character for name of the Cells object.

Type CellProperties object describing cell type for the Cells object.

State CellState object containing the state of species for the Cells object.

4.1.3 CellProperties

An object of class CellProperties (source in $GESSAPath/HybridModel/Classes/@CellProperties) de-
scribes the species contained within each cell. CellProperties objects have the following properties with
public get access:
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ProteinTypes Character array of signaling proteins in the cell.

NProteins Number of distinct signaling proteins.

PPI NProteins by NProteins by 2 array with entry PPI(:, i, j) indicating the rate at which proteins activate
(if > 0) or repress (if < 0) the ith protein unbound to a scaffold (j = 1) or bound to a scaffold (j = 2).

canTransport NProteins Boolean array indicating whether active copies of the proteins can be transported
to the nucleus with the TransportProtein class.

transportTime NProteins numeric array providing transport rate for transportable species (negative values
indicate non-transportable species).

ExternalSignalTypes Character array of names of external signals propagated to the cell (see DiffusionUpdater).

NExternalSignals Number of external signals propagated to the cell.

ExternalSignals NReceptors by NExternalSignals numeric matrix whose ij entry provides the rate at
which the jth external signal activates the ith receptor.

isExternalNeighbor NExternalSignals Boolean array indicating whether the external signal acts on
neighboring cells.

SignalIDs Character array of names of signal propagation reactions for any propagated external signals.

DistanceToSource Numeric array with distance of external signal to source for each signal propagation
reaction in SignalIDs.

RepressorTypes Character array of names of external repressors available to the cell.

NRepressors Number of external repressors.

Repressors NProteins by NRepressors by 2 array with entry Repressors(:, i, j) indicating the rate at
which repressor i represses all proteins if they are unbound to a scaffold (j = 1) or bound to a scaffold
(j = 2).

ScaffoldTypes Character array of names of scaffolds.

NScaffolds Number of scaffolds.

Scaffolds NProteins by NScaffolds by 2 array with entry Scaffolds(:, i, j) indicates the rate at which
proteins are bound to (j = 1) or unbound from (j = 2) scaffold i.

NeighborCellTypes Character array naming cells neighboring this cell.

NNeighborCells Number of neighboring cells.

isNeighborCell Boolean array with length equal to the number of cells in the organism indicating whether
each cell neighbors this cell.

GrowthRate Rate at which cell moves from signal source due to organism growth (currently ignored).

ReceptorTypes Character array naming receptors in the cell.

NReceptors Number of receptors.

Receptor2Target NProteins by NReceptors by 2 array with entry Receptor2Target(:, i, j) indicating the
rate at which receptor i activates each protein if it is unbound to a scaffold (j = 1) or bound to a
scaffold (j = 2).
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SpontaneousActivationReceptors NReceptors numeric array giving rate at which receptors are sponta-
neously activated.

SpontaneousActivationUnboundProteins NProteins numeric array giving rate at which proteins not bound
to scaffolds are spontaneously activated.

SpontaneousActivationBoundProteins NProteins numeric array giving rate at which proteins bound to
scaffolds are spontaneously activated.

SpontaneousInactivationReceptors NReceptors numeric array giving rate at which receptors are spon-
taneously inactivated.

SpontaneousInactivationUnboundProteins NProteins numeric array giving rate at which proteins not
bound to a scaffold are spontaneously inactivated.

SpontaneousInactivationBoundProteins NProteins numeric array giving rate at which proteins bound
to a scaffold are spontaneously inactivated.

TT Species Array of SSA Properties objects describing properties for transcription and translation events.

In the following subsections, we describe the SSA Properties class and access of the properties inside
CellProperties objects.

SSA Properties

An object of class SSA Properties (source in $GESSAPath/HybridModel/Classes/@SSA Properties) de-
scribes the parameters for stochastic simulation. SSA Properties objects have the following properties with
public get access:

V The volume of the compartment where simulated reactions occur. This parameter is important for bi-
molecular reactions.

Names Column vector of names of species involved in simulated process.

Population Column vector corresponding to Names vector with initial populations of species.

ReactionRates Row vector of reaction constants.

StoichMatrix Stoichiometry matrix with rows corresponding to species and columns corresponding to reac-
tions. ij entry provides the number of molecules of ith species that take part in the jth reaction. The
positive value corresponds to a reactant of the reaction; the negative value correspond to a product of
the reaction.

The values of properties correspond to values in a transcription/translation SBML file described in
Section 3.2.5.

Accessing CellProperties properties

Although the properties of species in a CellProperties object has direct get access, we have developed
several functions designed to access these objects in a controlled way. In particular, special care must be
taken in accessing particular species defined in a CellProperties object as the indexing used in these arrays
also defines the indexing used to store their population in CellState objects. We, therefore, recommend
use of the following public methods an object cellType of the CellProperties class:

cellType.getNState(stateName, ttName) Returns the number of species of type stateName. To reflect
properties in the cell, stateName should be one of the following strings: “protein”, “externalsignal”,
“repressor”, “scaffold”, “receptor”, “tt species”. The number of elements in the transcription and
translation process depends on the specific process. We select this process by specifying the name of
one of the species types ttName stored in the SSA Properties object.
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cellType.getStateNames(stateName) Returns the list of species of type stateName as described above.
If “tt species” is selected, this function will return all of the states stored inside all of the transcription
and translation processes.

4.1.4 CellState

An object of class CellState (source in $GESSAPath/HybridModel/Classes/@CellState) stores the popu-
lation of the species defined in the CellProperties object in Cells at a single simulation time. CellState
objects have the following properties with public get access:

Proteins Population of signaling proteins.

ActiveProteins Population of active signaling proteins.

ExternalSignals Population of external signals.

Repressors Population of repressors.

Scaffolds Population of scaffolds.

Receptors Population of receptors.

ActiveReceptors Population of active receptors.

TT Species Population of species involved in transcription and translation. Indexes match those of appended
array obtained from call to cellType.getStateNames(‘‘tt species’’).

NeighborSignals Population of external signals acting on this cell from neighboring cells received by this
cell.

Active Boolean indicating if the cell is currently active (within lifetime described in Section 3.2.2).

Unless otherwise specified, all of the properties above are indexed by the same index used to describe that
species in a corresponding CellProperties object.

As described for CellProperties, although publicly get accessible, we recommend accessing properties
through public support methods. For example, the population of any species type for an object state of
class CellState can be accessed as follows

outState = state.getState(stateName, index),

where

stateName Name of species type to return. To reflect properties in the cell, stateName should be one
of the following strings: “protein”, “active protein”, “externalsignal”, “neighbor signal”, “repressor”,
“scaffold”, “receptor”, “active receptor”, or “tt species”.

index If “tt species” is selected for stateName, the index of the transcription and translation process of
interest should be specified. This index should be selected with care prior to calling the getState
method based on the array of SSA Properties objects in CellProperties.

If the user wishes to access the population of a CellState object in an OrganismHistory object for diag-
nostics, we recommend using the getSpeciesNumber support function to ensure consistency in referencing
indexes from corresponding CellProperties and CellState objects (see Section 4.3).

The CellProperties class has an additional function, divideCells, which is used to facilitate cell
division inside the central GESSA Simulator class. This function divides cells by assuming that its contents
are matched for transcription and translation species and halved for other protein types. Users should modify
this function if they wish to model alternative division processes.
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4.2 Simulation classes

4.2.1 SystemUpdater

The SystemUpdater class (source in $GESSAPath/HybridModel/Classes/@SystemUpdater) is an abstract
parent class for all the processes used to evolve an organism in GESSA. This parent class requires that all
of its subclasses define an initializer method to configure the update process and its properties from the
Organism object created by the configuration files (Section 3.2) and specified process-specific input files. For
a SystemUpdater object called updater, this method is invoked as follows:

[state, time] = updater.initializer(organism, initFile, initTime),

where the input arguments are

organism An Organism object defining the organism to simulate.

initFile File(s) used to configure the SystemUpdater object.

initTime Initial simulation time for this updater process.

and output arguments are

state Updated description of the system state (usually in the form of an Organism object or array of Cells
objects) based on the configuration performed in this method.

time Updated estimate of the current system time based on the configuration.

Once initialized, running of the processes controlled by subclasses of the SystemUpdater class are per-
formed through the required update method as follows:

[newState, delTReal] = updater.update(state, previousTime, delT),

where the input arguments are

state The current state of the Organism object, typically as the Organism object itself or as an array of
Cells or CellState objects.

previousTime The time at the start of this update process.

delT The expected timestep of this update process.

and output arguments are

newState The state of the Organism object after the update process. Typically of the same classes as the
state input argument.

delTReal The true timestep of this update process.

If the update process also controls passing of species between the nucleus and cytoplasm as in TTUpdater
and PPIUpdater, the update method becomes a dummy method inside the subclasses of SystemUpdater.
This update method is then replaced with a new method called updateTransport which has an additional
input argument of an array of TransportProtein objects called transporters as follows:

[newState, delTReal] = updater.updateTransport(state, previousTime, delT, transporters)

Due to present limitations in the Matlab class structure, this modification is manually coded into the corre-
sponding SystemUpdater classes rather than overriding the standard update method.
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4.2.2 Simulator

The driveHybridModel function (Section 3.1) creates an object of the Simulator class (source in
$GESSAPath/HybridModel/Classes/@Simulator) to facilitate in running the GESSA simulation in the
simulateOrganisms function (source in
$GESSAPath/HybridModel/Functions/simulateOrganisms.m). As this class evolves the state of the organ-
ism, it is a subclass of the generic updater class SystemUpdater. The update method in the Simulator
object required by the SystemUpdater updates the state of the Organism state in the Simulator ob-
ject at each timestep based on the SystemUpdater processes called in the simulateAllTime method.
This simulateAllTime method runs modules for each of the update processes stored as private access
SystemUpdater and TransportProtein objects as specified by the configuration files (Section 3.2). The
Simulator object controls cell division module internally with the division method. While running these
modules, the simulateAllTime method also regulates their relative timing throughtout the simulation
time t0 to tf with the scheduler method as shown in the flow chart in Figure 4.2. We note that both
the cell signaling reaction PPIUpdater and transcription translation TTUpdater objects have access to the
TransportProtein objects in the Simulator object to facilitate their shuttling of species between the cyto-
plasm and nucleus.

If the user wishes to run their own module for a biological process, they would include a user-developed
SystemUpdater object inside the simulator. They should ensure that this object is properly initialized
by the simulateOrganisms function and Simulator initializer method with its own configuration files
specified in the central input file (Section 3.2.1). Likewise, they should modify the simulateAllTimes
method to invoke this module and track its timing appropriately as demonstrated in Figure 4.2. If this class
will distribute species between the cytoplasm and nucleus, it should have access to the TransportProtein
objects in the Simulator object similarly to the PPIUPdater and TTUpdater objects. Finally, GESSA
assumes that each process occurring over a given time step only makes moderate changes to the organism
state. Therefore, the Simulator object may safely update the system state resulting from all of the processes
by adding the corresponding change in state at the appropriate simulation time (see Figure 4.2), with an
additional check to ensure that no species population ever goes negative due to interactions of these changes.
We recommend the user be careful to likewise ensure small changes in the system state from their process
to avoid introducing falsely negative populations when it is implemented.

4.2.3 DiffusionUpdater

A DiffusionUpdater object (source in $GESSAPath/HybridModel/Classes/@DiffusionUpdater) propa-
gates external signals to the cells in the organism as specified in the configuration file description in Section
3.2.3. The private properties in this class are used to store the information about the source and propaga-
tion process (typically a diffusion process) for each signal from that configuration file with the initializer
routine. Currently, this initializer checks to ensure that the configuration file conforms to the standard
that there is only one source for each signal, which will be relaxed in future releases of GESSA. Once initial-
ized, the update method in the DiffusionUpdater object loops over each source and propagates the signal
according to the propagation model specified in the configuration file (see Section 3.2.3) and stored in the
diffusionType property of this class. Currently, the DiffusionUpdater recognizes the “3DPoint” propa-
gation process, which diffuses the signal in three dimensions from a point source which is either sustained
throughout the simulation period (in method diffuseSustain3D) or instantaneous (in method diffuse3D),
as specified by the start and end time of the source saved in sourceInitialTime and sourceEndTime prop-
erties. The user may add additional signal propagation processes, including more complex diffusion models,
by modifying the central switch in the update process to refer to a function that implements that process
when named as the type of signal propagation in the diffusionType property.
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4.2.4 PPIUpdater

A PPIUpdater object (source in $GESSAPath/HybridModel/Classes/@PPIUpdater) evolves the state of the
organism due to cell signaling processes with a PPBN graphical model. Specifically, it propagates the external
signal distributed by the DiffusionUpdater through the signaling network to alter the activation status of
receptors, signaling proteins, and finally transcription factors. At each step, the scaffold reaction is also
implemented to bind and unbind proteins from the scaffolds and incorporate that binding information in
the signal propagation analogously, but more directly and faster than for unbound proteins. These signal
propagation processes are implemented in the updateTransporters method, which calls several methods in
the PPIUpdater object to modularize the numerous reactions involved in the cell signaling reactions.

The model in the PPIUpdater considers that any active transcription factor (canTransport property in
CellProperties) may be transported to the nucleus if it remains active until the transport time (expected
value given in the transportTime property in CellProperties). To achieve this, any newly activated
transcription factor is added to the list of transported proteins in the TransportProtein object using the
addTransportProtein method in that class. After calling this method, active transcription factors are
removed from the population as stored in CellState to avoid double counting any species in transition.
At the simulation time, the PPIUpdater also extracts the list of transcription factors marked for transport
with the getTransportList method of the TransportProtein, where the logicalDirection argument is
set to 1 to extract only those copies of the transcription factors that have not yet reached the transport
time. The PPIUpdater then evolves the state of these transcription factors according to the signaling model.
If any of the candidate transported transcription factors is inactivated during this process, it is removed
from the list of transported proteins in the TransportProtein object using the inactivateProt method of
TransportProtein and returning these transcription factors to the population in the CellState object.

4.2.5 TTUpdater

A TTUpdater object (source in $GESSAPath/HybridModel/Classes/@TTUpdater) uses the Stochastic Sim-
ulation Algorithm (SSA) to perform the transcription and translation processes that create proteins in the
organism in response to transcription factors activated in the PPIUpdater. In order to work with active tran-
scription factors in the nucleus, the TTUpdater must first transport active transcription factors to the nucleus.
Similar to the PPIUpdater, the TTUpdater uses the transportProteins method in the TransportProtein
object to transport only those copies of the transcription factor that have remained active until the trans-
port time. Once transported to the nucleus, the TTUpdater implements SSA to perform the transcription
and translation process based on the available transcription factors and reactions specified in the configu-
ration files described in Section 3.2.5. Upon completion of the transcription and translation process, the
TTUpdater object moves any inactivated transcription factors, created signaling proteins, or ligands from
the nucleus into the cytoplasm after a characteristic transport time to make them available to the other
simulation processes. Because this transport back into the cytoplasm does not require further modification
of the species state over the transport period, the TTUpdater object performs it directly without use of the
TransportProtein object. If a user defined process required more complex balancing of species transport
into the cytoplasm, that process could use the methods in the TransportProtein object as described above
and in the following section to facilitate that transport.

An additional complication in properly moving species between the nucleus and cytoplasm in the TTUpdater
arises from the different naming conventions used in the TTUpdater and PPIUpdater. I.e., the TTUpdater
utilizes primarily species defined in the TT species property of CellProperties to facilitate implementation
of SSA, which the PPIUpdater uses other directly named properties in CellProperties. To avoid any con-
flicts, the TTUpdater object contains the private property mapping defined in the configuration file described
in Section 3.2.6 to appropriately name equivalent species in the processes. The TTUpdater when performing
all of the above described transport processes between the cytoplasm and nucleus to ensure proper naming
when retrieved from or returned to the cytoplasm. If any user-defined process similarly uses a different
naming convention, we recommend likewise specifying the mapping between names of the processes in the
configuration file as described in Section 3.2.6.
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4.2.6 TransportProtein

As described in the PPIUpdater and TTUpdater classes, TransportProtein objects (source in
$GESSAPath/HybridModel/Classes/@TransportProtein) facilitate species propagation between the nu-
cleus and cytoplasm. Transport using these objects is particularly important when that transport process
may be disrupted due to an alternative reaction such as transcription factor deactivation in the PPIUpdater.
TransportProtein objects contain the following properties

transportProteinTypes Character array with names of species that can be transported with the TransportProtein
object.

expectedTransportTime Numeric array with expected transport times corresponding to each of the species
in transportProteinTypes.

proteinNames Cell array containing names of species marked for transport.

activationTime Numeric array of times at which species in proteinNames are placed into the TransportProtein
object.

transportTime Numeric array of times at which species in proteinNames would be transported.

Currently, the transportProteinTypes and expectedTransportTime properties are set in the TransportProtein
constructor using the canTransport, transportTime, and ProteinTypes properties of the input CellProperties
object. As a result, the TransportProtein class is currently limited to transporting transcription factors
from the cytoplasm to nucleus. However, this requirement could be relaxed easily by modifying the con-
structor to initialize the transportProteinTypes and expectedTransportTime properties from other input
arguments. This modification would also enable the TransportProtein class to facilitate transport from
the nucleus to the cytoplasm and between other user defined compartments. In this case, we recommend the
user create other copies of the TransportProtein objects in the Simulator to avoid conflicts in referring to
transport of the same species across different compartments.

Although the properties in TransportProtein objects have public read access, we strongly caution the
user against such direct access to ensure that methods access only those species prior to the transport time
if modifying their state or after the transport time if performing the transport process. A transProt object
of class TransportProtein, therefore, has several public support methods that we recommend accessing
instead as described in the following subsections. It is important to note that these methods will not
update the species population stored in CellState objects in the organism. Therefore, the user must
take care to properly increment or decrement these populations when extracting or adding a species to the
TransportProtein list as described in the PPIUpdater and TTUpdater classes above.

[numProteins, protList] = transProt.clearTransporter(protsToClear)

The clearTransporter method removes all specified proteins from the list of transported proteins, without
regard for system time.

Input arguments:

protsToClear Cell array containing names of species to remove from the transporter. (Optional; default all
proteins).

Return variables:

numProteins Numeric array containing counts of each protein type which were removed.

protList Cell array containing names of proteins types removed.
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transProt.addTransportProtein(names, times)

The addTransportProtein method marks a protein for transport in the TransportProtein object. This
method will also determine and store the transport time for that protein using the private getTransportTime
method in the TransportProtein class.

Input arguments:

names Cell array containing names of proteins that are transported. Note, this array will contain duplicate
names if multiple copies of the same protein type are transported.

times Numeric array with corresponding time at which each protein in the names list is first marked for
transport.

numRemoved = transProt.inactivateProt(currentTime, name, actTime, transTime)

The inactivateProt method will remove any copies of the species marked for transport specified by the
name, activation time, and transport time from the transporter list in the TransportProtein object. If
there are multiple proteins with the same name, activation time, and transport time, the inactiveProt
function will only remove a single copy of that protein. Multiple copies can be specified by repeats in the
input arguments (see below). Note, the method will only perform this removal for proteins with transport
times before the current time to avoid removing a protein which has already been transported.

Input arguments:

currentTime Time at which species are to be removed.

name Cell array containing name(s) of proteins to be removed. Note, this array will contain duplicate names
if multiple copies of the same species type are transported.

actTime Numeric array containing the time(s) at which the proteins to be removed were marked for transport
corresponding to species names specified in name. Note, this array will contain duplicate entries if
removing multiple species marked for activation at the same time.

transTime Numeric array containing the transport time(s) of the species to be removed corresponding to
the species names specified in name. Note, this array will contain duplicate entries if removing multiple
species transported at the same time. Moreover, specification of any species with transTime after the
currentTime will be disregarded, and may cause this function to throw an error message.

Return variable:

numRemoved Total number of species removed from the TransportProtein object.

numTransport = transProt.transportProteins(currentTime, name)

The transportProteins method removes any specified species with transport times prior to the current time
from the list of proteins in the TransportProtein object. The process calling this method must add the
removed species to the population in the appropriate compartment, or they are lost for future simulations.

Input arguments:

currentTime Time at which to perform transport.

name Name of species to transport.

Return variable:

numTransport Number of copies of species of type name with transport time before the current time which
were stored in the TransportProtein object and removed from the object by this method.
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[nameList, actTime, transTime] = transProt.getTransportList(name, time, logicalDirection)

The getTransportList gets a list of all species in the TransportProtein object available for removal or
transport based upon timing specified.

Input arguments:

name Name of species to query.

time Time at which to query.

logicalDirection 0 to find species with transport times equal to time, positive for transport times greater
than time, and negative for transport times less than time.

Return variables:

nameList Cell array containing the names of the species satisfying the above described query for the
TransportProtein object.

actTime Numeric array containing the times at which species were marked for transport for species satisfying
the above described query for the TransportProtein object.

transTime Numeric array containing the transport times for species satisfying the above described query.

4.3 Simulation result classes and support functions

4.3.1 OrganismHistory

Simulation of GESSA creates an object of class OrganismHistory (source in
$GESSAPath/HybridModel/Classes/@OrganismHistory). The resulting OrganismHistory objects store the
properties of cells defined in the simulation as CellProperties objects and their corresponding state at each
simulation time in an array of CellState objects. Specifically, the following properties have public get access:

timeTracker Numeric array of stored simulation times.

orgCellTracker Array of CellState objects storing simulation results for cells (rows) at each simulation
time (columns).

cellNames Character array of names of stored cells.

cellTypes Array of CellProperties objects describing the stored cells.

startActiveTime Numeric array of first active time for each cell (Section 3.2.2).

endActiveTime Numeric array of last active time for each cell (Section 3.2.2).

The OrganismHistory class contains public methods to facilitate storage of the simulation results and to
extract the system state for later diagnostics. We recommend that users access these latter methods (includ-
ing notably getState, sumSetTimes, times) as described below for creating organism-specific diagnostics.

getState

The getState method returns the simulation history of a given cell and optionally for a given species type and
name if specified from the OrganismHistory object. Call to getState method from an OrganismHistory
object called orgHistory is as follows:

[state, time] = orgHistory.getState(cellName, speciesType, speciesName)
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Input arguments:

cellName Name of cell(s). If specific species are requested in the following arguments, this may contain only
the name of a single cell.

speciesType Type of species (see CellProperties) for which state will be returned. (OPTIONAL; Default:
all species types from specified cell(s).)

speciesName Name of species (defined in configuration files as described in Section 3.2) for which state
will be returned. (OPTIONAL; Requires specification of speciesType; Default: all species of type
speciesType).

Return variables:

state Array containing state of selected cell(s) and species (if specified) (rows) for each simulation time
(columns). The array is of CellState objects if only the cellName argument is specified. Otherwise
it is a numeric array.

time Numeric array containing simulation times of each column in the state array.

sumSetTimes

The sumSetTimes method returns the sum of the states of the OrganismHistory object (orgHist1 to the
orgHist2 OrganismHistory object at a set of specified timesteps (timeList). This function can be used in
combination with the times function (overloading the multiplication operator) to compute the average state
in these two histories. If the state of either orgHist1 or orgHist2 is not defined at a time in timeList, the
state is interpolated to that time. Any times before the first time in either orgHist1 or orgHist2 or after
the last time in either object is excluded. This function is called as follows:

sumHist = orgHist1.sumSetTimes(orgHist2, timeList)

Input arguments:

orgHist2 OrganismHistory object to which to add to the orgHist1 OrganismHistory object.

timeList Numeric array with time steps at which sum of states in orgHist1 and orgHist2 will be computed.
(OPTIONAL; Default: all timesteps in orgHist1 and orgHist2 objects.)

Return variables:

state Array containing state of selected cell(s) and species (if specified) (rows) for each simulation time
(columns). The array is of CellState objects if only the cellName argument is specified. Otherwise
it is a numeric array.

time Numeric array containing simulation times of each column in the state array.

times (Overloading the multiplication operator)

The times function is defined to overload the multiplication operator to define scalar multiplication with the
states stored in an OrganismHistory object. It is called automatically with either of the following commands
for multiplication of the orgHist OrganismHistory object with scalar c as follows:

c*orgHist
orgHist*c
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4.3.2 getSpeciesNumber

The getSpeciesNumber function (source in $GESSAPath/HybridModel/Functions/getSpeciesNumber) re-
turns the population of a specified species in given cell(s) at a specified simulation time from an OrganismHistory
object. The function is called as follows:

nMol = getSpeciesNumber(orgHist, speciesName, speciesType, cellName, time)

Input arguments:

orgHist OrganismHistory object from which to extract the species state.

speciesName Name of species (defined in configuration files as described in Section 3.2) for which state will
be returned.

speciesType Type of species (see CellProperties) for which state will be returned.

cellName Cell array containing strings with names of cell(s) for which to extract the species population.

time Time at which to return the species state. If not in the timeTracker list stored in orgHist, time
refers to the closest time on timeTracker to the specified time.

Return variables:

nMol Numeric array with population of specified species at a specified time for cells in cellName (array).

4.3.3 plotSpeciesHistory

The plotSpeciesHistory function (source in $GESSAPath/HybridModel/Functions/plotSpeciesHistory)
plots the population of a specified species in specified cell(s) over the simulation period in an OrganismHistory
object. The function is called as follows:

plotSpeciesHistory(orgHist, speciesType, speciesName, plotSymbols, inHours, ...
showLegend, plotColors, plotCells)

Input arguments:

orgHist OrganismHistory object from which to plot the species state.

speciesType Type of species (see CellProperties) for which state will be plotted.

speciesName Array containing name(s) of species (defined in configuration files as described in Section 3.2)
for which state will be plotted.

plotSymbols Cell array specifying the plot colors/symbols used for each species specified in speciesName.
To use only cell specific symbols, specify as ‘ ’.

inHours Boolean to scale time axis in hours if true and in seconds in false.

showLegend Boolean to specify whether or not to include the plot legend.

plotColors Cell array specifying the plot colors/symbols used for each cell. To use only species specific
symbols, specify as ‘ ’.

plotCells Boolean array specifying which of the cells contained in the OrganismHistory object should be
plotted. (Optional; Default: all cells)
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4.3.4 speciesPerOrg

The speciesPerOrg function (source in $GESSAPath/HybridModel/Functions/speciesPerOrg) outputs the
population of specified species in specified cell(s) in an OrganismHistory object over the specified time
period. The function is called as follows:

speciesPerOrg(orgHist, cellName, speciesName, speciesType, startTime, ...
endTime, timeStep, fileName)

Input arguments:

orgHist Array of OrganismHistory objects containing results from multiple simulations of the same or-
ganism.

cellName Cell array containing the name(s) of cells for which to output species populations.

speciesName Cell array containing name(s) of species whose populations should be output.

speciesType Cell array of same length as speciesName containing types of each specified species (as de-
scribed in the CellProperties class).

startTime Time at which to start output.

endTime Time at which to end the output.

timeStep Length of time between outputs. (Optional; default: 100s).

fileName Name of file to which to output the results. (Optional; Default: speciesTable.txt)
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Figure 4.2: Flow chart demonstrating regulation of relative timing of simulation processes at time from
simulation start time t0 to simulation end time tf by simulateAllTimes method in the Simulator objects.
Here, t is the current simulation time, tD the time for the next external signal propagation reaction (by the
DiffusionUpdater object), tP the time for the next cell signaling reaction (by the PPIUpdater object), and
tT the time for the next transcription translation reaction (by the TTUpdater object).
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Chapter 5

Feedback

Please send feedback to Ludmila Danilova ludmila.danilova@gmail.com or Elana Fertig ejfertig@jhmi.edu.
If you want to send a bug report, it must be reproducible. Send the configuration files, describe what

you think should happen, and what did happen.
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